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ANALYTICAL SOLUTION OF SOLIDIFICATION PROBLEMS
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An analytic solution (in the form of an infinite series) has been ob-
tained for the inverse problem of solidification in the most general
three-dimensional case. A numerical example is given.

In the three-dimensional case the temperature dis-
tribution in a solidifying crust is described by the
Fourier equation
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The contour of the solidification front is assumed
given at any instant of time:

(i, e, s Fo)=0. (2)
The surface contour of the bodyis given by the equa-
tion
T (0, N2 Ngr 0) =0. (3)
The function I" and its derivatives are assumed con-
tinuous.

As usual, the boundary conditions are specified
only on the contour of the solidification front:
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The boundary conditions formulated are a natural
extension to the three-dimensional case of the for-
mulation of the one-dimensional solidification prob-
lem [1].

Condition (5) can be transformed by the method pro-
posed by Ivantsov [2].

For this purpose we consider that in the orthogonal
coordinate system n, s, o the total differential of the
dimensionless temperature df is written in the form
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Taking into account the constancy of the temperature
on the contour of the solidification front I" = 0, wehave
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Moreover, there is, of course, no variation of the
temperature along the surface of the solidification
front; hence

= 0. (7

T=0

a0

20
Js

; =0. (8)
I'=0 do

=0

G

S ol

20 45 40 05 0 a5 10 6 200,
Section A-A
N2

20 A5 10 05 0 05 10 15 20 9,

Fig. 1. Contours of body and iso~-
solidus for successive stages of
solidification of an ingot of ellipti-
cal cross section with a parabo-
loidal bottom: 0) outer contour of
body (Fo = 0); 1) Fo = 0.25; 2) 0.5;
3) 0.75; 4) 1.0; 5) 1.25; 6) 1.5.

Thence from expression (6)
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As usual, the expression for 86/9n can be written
in 1y, My 73coordinates in the form
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Then condition (5) becomes
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We find the solution of Eq. (1) withboundary conditions
(4) and (11) and given contour T in the form of a series
that is a natural generalization of the one-dimensional
solution {1]:
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Fig. 2, Variation with time of the
difference @, — ®g at the surface
of an ingot of elliptical cross sec-
tion with a paraboloidal bottom.
The curves were constructed for
surface points with the coordi-
nates: 1) (0,0, 0); 2) (1, 3.16,0);
3) (1,2,1.225); 4) (1,0,1.58).
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Substituting expressions (13)—(15) into Eq. (1) and
equating the coefficients of like powers of T to zero,
we obtain the following recurrence relation;
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The coefficients A and A, are determined from the
boundary conditions (4) and (11), respectively:
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In general, it is difficult to prove the convergence
of series of (13) at values of the coefficients A; deter-
mined by expressions (16)—(18). However, the expres-
sions presented give a solution of the problem at least
for certain cases of practical importance.
Ag an example we have considered the solidification
of an ingot of elliptical cross section with a parabo-

loidal bottom.
In this case the function T is given in the form
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The contours of the bottom of this ingot and the con-
tours of the isosolidus for successive stages of solidi~
fication are shown in Fig. 1.

In the calculation it was assumed that o, = 0.1; az=
= 0.4; k= 1. Confining ourselves to the first fourterms
of series (12), using expressions (18) and (16) to cal-
culate the coefficients A;, and considering that at the
surface of the body I'|g = kFo, we obtain
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In order to calculate the dimensionless tempera-
ture 65 we took points in the bottom part of the ingot
surface with coordinates (0,0,0), (1,3.16,0), (1,2,
1.225).

The variation of &4 with time at each of these points,
respectively, is given by the expressions

8 == 0.~ 1.000 Fo— 0.226 Fo®,
65 == 08,-—0.715Fo — 0.058 Fo? -— 0.074 Fo?,
6, =~0.— 0.472Fo — 0.168 Fo* — 0.0200 Fo?,
Bs ==6,—0.385 Fo — 0.145 Fo* — 0.0340 Fo®.

These can be used at least for Fo =< 1; at larger values
of Fo a larger number of terms of series (12) must be
determined.

Figure 2 shows the variation with time of the dif-
ference 6, — 04 calculated from the formulas pre-
sented.
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NOTATION

f = ct/r is dimensionless temperature; 6 = ctc/r;
6g = cts/r; t is temperature; t, is crystallization tem-
perature; tg is surface temperature; ¢ is specific heat;
r is specific latent heat of crystallization; Fo = ar/X?
is dimensionless time; a is thermal diffusivity; 7 is
time;N}rZ is the characteristic dimension of body; n; =
= x;/X is the dimensionlegs coordinate;nisthe dimen-
sionless normal; qp = QIX ¢/Ar is dimensionless heat
flow from liquid core of ingot to crust; Qp is the corre-
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sponding dimensional heat flow; A is thermal conduc-
tivity.
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